Network operators face seemingly conflicting challenges. They must maximize network assets, reduce costs, and introduce new revenue-generating services—all while maintaining existing legacy services. This may seem like an impossible combination to achieve, but just four key capabilities provide the right ingredients to reconcile apparently conflicting needs and profitably address these big business challenges:
- Transport legacy services in groups. Individual legacy service instances are often transported separately, which makes inefficient use of network and fiber resources. It is more efficient to combine multiple instances into batches that can be transported together at higher bit rates.
- Combine multiple services onto a single fiber. Fiber resources are expensive and constrained. Freeing up fiber capacity or reducing the number of leased fibers needed to sustain growing networks by transporting additional services over a single fiber pair saves on fiber resource costs.
- Efficiently pack 100G wavelengths. Many 100G wavelengths are inefficiently utilized, cumulatively wasting a large amount of capacity. If more services can be transported over existing 100G wavelengths, the network is more efficient and additional costs can be avoided.
- Provide transparent wholesale services. Services that support a range of SLA choices by allowing demarcation and providing visibility into traffic, management, and alarms are attractive to customers and a valuable source of revenue.
You may be surprised to find out that an often-overlooked technology, Optical Transport Network (OTN), provides all four of these capabilities. OTN is a standard (ITU-T G.709) digital wrapper technology that allows multiple services of various types to be packaged and transported together at higher rates. This universal package is ideal for transporting legacy services, which makes better use of network resources while simultaneously benefiting from modern technologies and rates. OTN also inherently allows an end customer access to network management and performance data. Finally, as networks move to 100G transport, OTN provides an easy means of filling partially utilized 100G wavelengths by transparently delivering a combination of services. Overall, OTN is a highly viable option that deserves serious consideration for network modernization. On grounds of both efficiency and ongoing revenue opportunities, OTN carries excellent potential for long-term ROI.